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Abstract
Solid helium (3He and 4He) in the hcp and fcc phases has been studied by
the path-integral Monte Carlo technique. Simulations were carried out in the
isothermal–isobaric (N PT ) ensemble at pressures up to 52 GPa. This allows
one to study the temperature and pressure dependences of isotopic effects on the
crystal volume and vibrational energy in a wide parameter range. The obtained
equation of state at room temperature agrees with available experimental data.
The kinetic energy, Ek, of solid helium is found to be larger than the vibrational
potential energy, Ep. The ratio Ek/Ep amounts to about 1.4 at low pressures
and decreases as the applied pressure is raised, converging to 1, as in a harmonic
solid. Results of these simulations have been compared with those yielded by
previous path integral simulations in the NV T ensemble. The validity range of
earlier approximations is discussed.

1. Introduction

The structural and thermodynamic properties of solid helium have been of continuous interest
in condensed matter physics because of its quantum nature and electronic simplicity. In fact,
solid helium is in many respects an archetypal ‘quantum solid’, where zero-point energy and
associated anharmonic effects are appreciably larger than in most known solids. This gives rise
to peculiar properties, whose understanding has presented a challenge for elaborated theories
and modelling from a microscopic standpoint [1]. Among these properties, the behaviour of
condensed helium at high density has received much attention. In fact, diamond-anvil-cell and
shock-wave experiments have allowed to study the equation of state (EOS) of solid helium up
to pressures of the order of 50 GPa [2–4]. In recent years, the effect of pressure on heavier
rare-gas solids has also been of interest for both experimentalists [5, 6] and theorists [7–10].

Anharmonic effects in solids, and in solid helium in particular, have been traditionally
studied by using theoretical techniques such as quasiharmonic approximations and self-
consistent phonon theories [11]. In more recent years, the Feynman path-integral formulation
of statistical mechanics [12, 13] has been exploited to study the thermodynamic properties of
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solids at temperatures lower than their Debye temperature �D, where the quantum character of
the atomic nuclei is relevant. Monte Carlo sampling applied to evaluate finite-temperature path
integrals allows one to carry out quantitative and nonperturbative studies of highly anharmonic
effects in solids [1].

The path-integral Monte Carlo (PIMC) technique has been used to study several properties
of solid helium [1, 14–17], as well as heavier rare-gas solids [18–22]. For helium, in particular,
this method has predicted kinetic-energy values [14] and Debye–Waller factors [23] in good
agreement with data derived from experiments [24, 25]. PIMC simulations were also employed
to study the isotopic shift in the helium melting pressure [15, 16]. The EOS of solid helium at
T = 0 has been studied by diffusion Monte Carlo techniques in a wide density range (down to
a molar volume of 15 cm3 mol

−1
), using an accurate interatomic potential [26]. This has been

done by Chang and Boninsegni [17] at finite temperatures for both solid and liquid helium, by
using PIMC simulations with several interatomic potentials, and for molar volumes down to
2.6 cm3 mol

−1
. These authors suggested that the use of effective potentials including two- and

three-body terms alone can be insufficient to reproduce the EOS of condensed helium, in the
pressure range experimentally accessible at present.

In this paper, we study the effect of pressure on solid 3He and 4He by PIMC simulations.
We employ the isothermal–isobaric (N PT ) ensemble, which allows us to consider properties
of these solids along well-defined isobars. The interatomic interaction is described by a
combination of two- and three-body terms, which are directly included in the simulations. This
permits us to check the results of earlier simulations, where the effect of three-body terms was
taken into account in a perturbative way [16, 17]. By comparing the results for 3He and 4He,
we analyse isotopic effects on the vibrational energy and crystal volume of solid helium.

The paper is organized as follows. In section 2, the computational method is described. In
section 3 we present results for the equation of state, vibrational energy, and isotopic effects on
the lattice parameters. Finally, section 4 includes a discussion of the results and the conclusions.

2. Method

Equilibrium properties of solid helium in the face-centred cubic (fcc) and hexagonal close-
packed (hcp) phases have been calculated by PIMC simulations in the N PT ensemble. Most
of our simulations were performed on supercells of the fcc and hcp unit cells, including 500
and 432 helium atoms respectively. To check the convergence of our results with system size,
some simulations were carried out for other supercell sizes, and it was found that finite-size
effects for N > 400 atoms are negligible for the quantities studied here (they are smaller than
the error bars).

Helium atoms have been treated as quantum particles interacting through an effective
interatomic potential, composed of a two-body and a three-body part. For the two-body
interaction, we have taken the potential developed by Aziz et al [27] (the so-called HFD-
B3-FCI1 potential). For the three-body part we have employed a Bruch–McGee-type
potential [28, 29], which includes the exchange three-body interaction and a triple-dipole
Axilrod–Teller interaction. For most of the simulations presented below, the parameters
employed for the three-body terms were those given by Loubeyre [29], but with the parameter
A in the attractive exchange interaction rescaled by a factor 2/3 (as suggested in [16], and
giving A = 20.43 au).

In the path-integral formulation of statistical mechanics, the partition function is evaluated
through a discretization of the density matrix along cyclic paths, composed of a finite number
L (Trotter number) of ‘imaginary-time’ steps [12, 13]. In the numerical simulations, this
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discretization gives rise to the appearance of L replicas for each quantum particle. Thus, the
practical implementation of this method relies on an isomorphism between the quantum system
and a classical one, obtained by replacing each quantum particle by a cyclic chain of L classical
particles, connected by harmonic springs with a temperature-dependent constant. Details of this
computational method can be found elsewhere [1, 30, 31].

Our simulations were based on the so-called ‘primitive’ form of the PIMC
technique [32, 33]. For interatomic potentials including only two-body terms, effective forms
for the density matrix have been developed, which allow one to reduce efficiently the Trotter
number, thereby appreciably simplifying the calculation [16]. Such a simplification is not
possible here, since we consider explicitly three-body terms in the simulations. Quantum
exchange effects between atomic nuclei were not considered, as they are negligible for solid
helium at the pressures and temperatures studied here. (This should be valid as long as there
are no vacancies and T is greater than the exchange frequency ∼10−6 K [1].) The dynamic
effect of the interactions between nearest and next-nearest neighbours is explicitly considered.
The effect of interactions beyond next-nearest neighbours is taken into account by a static-
lattice approximation [19, 34], which was employed earlier in PIMC simulations of rare-gas
solids [7, 22]. We have checked that including dynamical correlations between more distant
atom shells does not change the results presented below. For the energy we have used the
‘crude’ estimator, as defined in [32, 33]. All calculations have been performed using our PIMC
code [35], that has been employed earlier to study various types of solids [22, 31, 36, 37].

Sampling of the configuration space has been carried out by the Metropolis method at
pressures P � 52 GPa, and temperatures between 25 K and the melting temperature of the
solid at each considered pressure. A simulation run proceeds via successive Monte Carlo steps.
In each step, the replica coordinates are updated according to three different kinds of sampling
scheme: (1) sequential trial moves of the individual replica coordinates; (2) trial moves of the
centre of gravity of the cyclic paths, keeping the shape of each path unaltered, and (3) trial
changes on the logarithm of the volume of the simulation cell. For given temperature and
pressure, a typical run consisted of 104 Monte Carlo steps for system equilibration, followed
by 105 steps for the calculation of ensemble average properties. Other technical details are the
same as those used in [22, 38].

To have a nearly constant precision for the simulation results at different temperatures, we
have taken a Trotter number that scales as the inverse temperature. At a given T , the value
of L required to obtain convergence of the results depends on the Debye temperature �D of
the considered solid (higher �D needs larger L). Since the vibrational frequencies (and the
associated Debye temperature) increase as the applied pressure is raised, L has to be increased
accordingly. Thus, we have taken LT = 4000 K for 3He and 3000 K for 4He, which were
found to be sufficient for simulations of the corresponding solids at the pressures considered
here (P � 52 GPa). This means that, for solid 3He at T = 25 K, we have L = 160 and then
the computational time required to carry out a PIMC simulation for N = 500 helium atoms is
equivalent to a classical Monte Carlo simulation of L N = 80 000 atoms (assuming the same
number of simulation steps).

3. Results

3.1. Crystal volume

Shown in figure 1 is the pressure dependence of the crystal volume for solid 4He at 300 K.
Open symbols represent results of PIMC simulations with different interatomic potentials:

(a) only two-body interactions with an Aziz-type potential [27] (squares);
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Figure 1. Equation of state pressure–volume of hcp 4He at 300 K, as derived from PIMC
simulations for different interatomic potentials. (a) Open squares: only two-body interactions
with an Aziz-type potential [27]; (b) open diamonds: two-body terms as in [27] and three-body
interactions, as defined in [29]; (c) open circles: same potential as (b), but with the exchange three-
body interaction rescaled by 2/3. Error bars of the simulation results are less than the symbol
size. Dotted lines are guides to the eye. Open triangles show earlier results obtained from PIMC
simulations in the N V T ensemble [17], with the attractive exchange interaction rescaled as in (c).
Black symbols show experimental data obtained by Mao et al [3] (filled circles) and Loubeyre
et al [4] (filled squares).

(b) two-body interactions as in [27] plus three-body terms as in [29] (diamonds);
(c) the same two-body potential and three-body interaction with the exchange part rescaled by

2/3, as proposed in [16] (circles).

For comparison, we also present results derived from PIMC simulations in the NV T
ensemble [17], with the exchange interaction rescaled by the same factor 2/3 (triangles). Filled
symbols indicate experimental results obtained by Mao et al [3] (filled circles) and Loubeyre
et al [4] (filled squares). Our simulation data show that the interatomic potential (c) gives
results for the equation of state of solid 4He close to the experimental data. The consideration
of only two-body terms predicts, for a given applied pressure, a crystal volume larger than the
experimental one. In contrast, consideration of both two- and three-body terms derived from
ab initio calculations underestimates the volume of solid helium. This is in line with results
obtained earlier from PIMC simulations in the NV T ensemble in [16, 17]. These authors did
not introduce the three-body terms directly in the simulations, but calculated, in a perturbative
way, their contribution to thermodynamic averages from configurations obtained in PIMC
simulations. In figure 1 (open circles and triangles) we observe that our N PT simulations
give the same results as those obtained earlier in the NV T ensemble [17] for pressures lower
than 30 GPa. However, at higher pressures both sets of results differ appreciably, and for a
given P the procedure employed in [17] yields a volume larger than that obtained here.

Our results with the effective interatomic potential (c) follow closely the experimental
ones, even at the highest pressures considered here, although they seem to become lower
than the latter as pressure rises. However, taking into account the dispersion of experimental
points and the error bars of the simulation data, differences between both sets of data are not
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Figure 2. Temperature dependence of the lattice parameter a of hcp helium, derived from PIMC
simulations at two different pressures: (a) 12 GPa and (b) 52 GPa. Squares and circles indicate
results for 4He and 3He, respectively. Error bars are smaller than the symbol size. Dashed lines are
guides to the eye.

enough to invalidate the accuracy of the effective potential (c) in the pressure range studied
here. This contrasts with the conclusions presented by Chang and Boninsegni [17], who argued
that two- and three-body terms alone may be insufficient to reproduce quantitatively the EOS of
condensed helium at pressures of the order of 50 GPa. In fact, for molar volumes smaller than
3 cm3 mol

−1
, these authors found pressures larger than the experimental ones (see figure 1). In

view of these results, in the remainder of the paper we will employ only the interaction potential
(c) (with the exchange three-body part of [29] rescaled by 2/3).

In figure 2 we present the temperature dependence of the lattice parameter a for hcp helium
at two pressures: (a) 12 GPa and (b) 52 GPa. Squares and circles represent the results of our
PIMC simulations for 4He and 3He, respectively. Note the different vertical and horizontal
scales in (a) and (b). As expected, the difference a3 − a4 between lattice parameters of 3He
and 4He at a given pressure decreases as the temperature is raised (at high T the solid becomes
‘more classical’).



3474 C P Herrero

0  200    400    600
Temperature  (K)

10
   

 

 

 

12 GPa

32

52

hcp  He

3
χ

0.5

1

1.5

2

2.5

3

Figure 3. Isotopic effect on the lattice parameter a of hcp helium, as obtained from PIMC
simulations. Shown is the parameter χ = (a3 − a4)/a4 as a function of temperature for three
different pressures: squares, 12 GPa; circles, 32 GPa; triangles, 52 GPa. Error bars are of the order
of the symbol size. The lines are guides to the eye.

To quantify the isotopic effect on the linear dimensions of solid helium, we employ the
parameter χ = (a3 −a4)/a4, which measures the relative difference between lattice parameters
of solid 3He and 4He. This parameter χ is displayed in figure 3 as a function of temperature for
three different pressures: 12 (squares), 32 (circles), and 52 GPa (triangles). For each pressure,
results are shown for temperatures at which the considered solids were stable along the PIMC
simulations. At low T , the parameter χ is larger for lower pressure, and values obtained for
different pressures approach each other as the temperature rises. At T > 300 K, we find that
χ is larger for P = 52 GPa than for 32 GPa. This does not mean that the difference a3 − a4 is
larger at 52 GPa, but it is a consequence of the normalization by a4, which is clearly smaller at
higher pressure.

The difference a3 − a4 is largest at small pressures and low temperatures, where quantum
effects are most prominent. For a given solid, quantum effects on the crystal size can be
measured by the difference �a = a − acl between the actual lattice parameter a and that
obtained for a ‘classical’ crystal of point particles, acl. This difference decreases for increasing
atomic mass and temperature [19, 36]. From our PIMC simulations at T = 25 K and a
relatively low pressure of 0.3 GPa, we found an increase in the linear size of solid 3He and
4He of 8.2 and 7.2% with respect to the classical crystal at zero temperature. For comparison,
we note that the ‘zero-point expansion’ for heavier rare gases causes a relative increase of 4.1%
and 1.2% in the lattice parameter of fcc Ne and Ar, respectively [38].

3.2. Energy

For a given interatomic potential, the internal energy of a solid, E(V , T ), at volume V and
temperature T can be written as

E(V , T ) = Emin(V ) + Evib(V , T ), (1)

where Emin(V ) is the potential energy for the (classical) crystal at T = 0 with point atoms on
their lattice sites, and Evib(V , T ) is the vibrational energy. Since we are working here in the
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Figure 4. Temperature dependence of the kinetic energy of hcp solid helium at two different
pressures, as derived from PIMC simulations: P = 12 GPa (squares) and 52 GPa (circles). Open
and filled symbols correspond to 4He and 3He, respectively. Error bars of the simulation results are
less than the symbol size. The dashed lines are guides to the eye.

isothermal–isobaric ensemble, the volume is implicitly given by the applied pressure. At finite
temperatures, V changes with T due to thermal expansion, and for real (quantum) solids, the
crystal volume depends on quantum effects, which also contribute to expanding the crystal with
respect to the classical expectancy (mainly at low T ). Thus, the volume V in equation (1) is an
implicit function of P and T , i.e., V = V (P, T ).

The vibrational energy, Evib(V , T ), depends explicitly on both V and T , and can be
obtained by subtracting the energy Emin(V ) from the internal energy. In this way, path-integral
Monte Carlo simulations allow one to obtain separately the kinetic, Ek, and potential energy,
Ep, associated to the lattice vibrations: Evib = Ek + Ep.

In figure 4 we show the kinetic energy of solid helium (hcp phase) as a function of
temperature for P = 12 and 52 GPa. Open symbols correspond to 4He and filled symbols to
3He. At 52 GPa, the low-temperature kinetic energy of solid 4He is found to be 56 meV/atom,
to be compared with 8.3 meV/atom obtained for the fcc phase at 25 K and low pressure
(P = 0.3 GPa, giving a molar volume of 9.95 cm3 mol

−1
). This value of Ek is similar to

those obtained earlier from PIMC simulations in the NV T ensemble at temperatures close to
25 K and molar volumes around 10 cm3 mol

−1
[23].

At low temperature the ratio E3
k/E4

k between the kinetic energy of 3He and 4He is close
to 1.155, the expected value in a harmonic model of lattice vibrations. This indicates that,
irrespective of the important anharmonicity present in these solids, anharmonic shifts in Ek

scale with mass approximately as in a quasiharmonic model. The ratio E3
k/E4

k decreases as the
temperature rises and quantum effects are less important. At the highest simulated temperatures
(300 K for P = 12 GPa and 600 K for 52 GPa) we find E3

k/E4
k ≈ 1.05, still clearly larger than

the classical limit: E3
k/E4

k → 1.
The anharmonicity of the lattice vibrations is clearly noticeable when one compares the

kinetic and potential energy of solid helium. From our PIMC simulations, we have found in all
cases considered here that the vibrational potential energy Ep is smaller than the kinetic energy
Ek. Shown in figure 5 is the ratio Ek/Ep for 4He as a function of pressure at 25 K. We have
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Figure 5. Kinetic-to-potential energy ratio, Ek/Ep, for solid 4He as a function of applied pressure
at T = 25 K. Black and open symbols correspond to fcc and hcp phases, respectively. Error bars,
where not shown, are smaller than the symbol size.

included in this figure results for fcc (low pressure) and hcp (high pressure) helium. The kinetic-
to-potential energy ratio decreases with increasing pressure; first it goes down rapidly for
pressures lower than 5 GPa, and then it decreases more slowly at higher pressures, approaching
the value Ek/Ep = 1, characteristic of harmonic vibrations. We note that the fact that Ek > Ep

has been also found for solids of heavier rare gases from PIMC simulations [19, 22, 38].
For solid 4He at low pressure, we find that Ek is larger than Ep by about 40%. This

important difference between Ek and Ep reflects the large anharmonicity of lattice vibrations
in this solid. For comparison, we mention that these energies differ by about 20% and 7% for
solid neon and argon, respectively [22, 38]. These numbers are very large when compared with
covalent or metallic solids, and are due to the weakness of van der Waals-type bonds, which
allows for a large amplitude of the atomic vibrations.

4. Discussion

Path-integral Monte Carlo simulations are well suited to studying quantum effects on structural
and thermodynamic properties of solids. These effects are particularly important for solid
helium, where isotopic effects are relevant, as manifested in differences between the crystal
volume and vibrational energies of solid 3He and 4He. The PIMC method enables us to study
phonon-related properties without the assumptions of quasiharmonic or self-consistent phonon
approximations, and to study anharmonic effects in solids in a nonperturbative way. This
method allows us to separate the kinetic and potential contributions to the vibrational energy
of a given solid, and quantify the anharmonicity of the lattice vibrations, which together with
zero-point motion give rise to isotopic effects.

PIMC simulations yield in principle ‘exact’ values for measurable properties of many-
body quantum problems, with an accuracy limited by the imaginary-time step (Trotter number)
and the statistical error of the Monte Carlo sampling. Thus, the effective interatomic potential
employed here gives a good description of structural and thermodynamic properties of solid
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helium up to pressures of the order of those presently achieved in experiments. In particular,
the equation of state P–V is well described by this potential in the pressure range considered
here (P � 50 GPa), even though it is partially an empirical potential, in the sense that the
attractive three-body part was rescaled ad hoc from the fit to ab initio calculations. Explicit
consideration of three-body terms in PIMC simulations makes the computation times much
longer, in comparison with simulations including only two-body terms. But this has allowed us
to check the validity limit of some approximations made earlier in these kinds of calculation,
such as including the effect of three-body terms in a perturbative way (from configurations
obtained in PIMC simulations) [16, 17]. As a result, this approximation yields at P < 30 GPa
an EOS indistinguishable within error bars from that obtained here. At higher pressures,
however, it predicts volumes larger than those found in the present work (and in experiment).

Due to the large anharmonicity of lattice vibrations in solid helium, the isotopic effect on
the crystal volume is important. At low temperatures, the dependence of the crystal volume on
isotopic mass is related to the zero-point lattice expansion. The magnitude of this isotopic
effect decreases appreciably as the temperature or pressure are raised. Nevertheless, we
emphasize that it is still measurable at the highest pressures considered here and at T close to
the corresponding melting temperature, as shown in figure 3. This is in line with the observed
isotopic effect on the melting temperature at low pressure [15, 16].

Anharmonic effects in solids have been quantified earlier by comparing the kinetic and
potential energies derived from PIMC simulations [19, 38]. For solid helium, and for different
pressures and temperatures, we have found Ek > Ep, as for solids of heavier rare gases with
Lennard-Jones-type potentials [38]. The departure of the ratio Ek/Ep from its value for a purely
harmonic solid (Ek/Ep = 1) is a measure of the overall anharmonicity of the considered solids.
For given T , we have found that this energy ratio decreases as the pressure is raised. Note
that the ratio Ek/Ep alone does not give any information on the details of the anharmonicity
of the vibrational modes, but gives a quantitative measure of the overall anharmonicity of a
given solid. In particular, it is well suited to comparing the anharmonicity of similar materials.
For rare-gas solids at low T, Ek/Ep increases from 1.02 for xenon to 1.23 for neon at zero
pressure [38]. This ratio is clearly higher for solid helium at low P , as shown in figure 5:
Ek/Ep ≈ 1.4 for fcc 4He at 25 K.

It has been recently suggested that pressure causes a decrease in anharmonicity
[37, 39, 40], in line with earlier observations that the accuracy of quasiharmonic approximations
increases as the pressure rises and the density of the material increases [41, 42]. Thus, such
approximations become exact in the high-density limit [37, 42]. This is related to the fact
that the ratio of the vibrational energy to the whole internal energy of the crystal decreases for
increasing pressure, in spite of the increase in zero-point energy caused by the rise in vibrational
frequencies. It has been also argued that at high pressures, the thermodynamic properties of
solids can be well described by classical calculations, i.e., dealing with the atoms as classical
oscillators in a given potential [43]. This means that, at a given temperature, such a classical
approach becomes more and more accurate as the pressure is raised. The origin of this is similar
to that described above for the success of quasiharmonic approaches. Since in this respect the
lattice vibrations become less relevant as the pressure rises, and eventually give a negligible
contribution to the free energy of the solid, their description by a classical or a quantum model
becomes unimportant for solids in the limit of very large pressures.

In summary, we have carried out PIMC simulations of solid helium in the isothermal–
isobaric ensemble. In general, our results support the assumptions made in earlier calculations,
where three-body terms were included in a perturbative way. In particular, the equation of state
obtained here coincides at P � 30 GPa with that found in calculations employing the NV T
ensemble with that assumption. At high pressures, however, data yielded by the present PIMC
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simulations differ from those obtained earlier, using similar interatomic potentials. The kind
of effective interatomic potentials employed here, including two- and three-body terms, will
probably give a poor description of solid helium at very high pressures (�60 GPa), but seems
appropriate for the pressure range in which experimental data are available at present.
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